Abstract
Simulations of tungsten armour cracking under small ELM-like plasma heat load, which does not cause surface melting, have been performed using the PEGASUS-3D code. A dedicated series of experiments have been performed in the QSPA-Kh50 facility for measurements of the unknown tungsten thermophysical properties and for verification of the PEGASUS-3D simulation results. The simulations revealed that a cellular crack network with average mesh size Λ ∼ 0.5 mm formed after first ELMs and the pattern does not change further. With increasing number of repetitive ELMs loads, the average crack width Δ( n) has a maximum value Δ m . The ratio of Δ m / Λ is equal to the tungsten thermal expansion at the maximum surface temperature. Δ( n) tends to this value exponentially. The number of ELMs n m needed for Δ stabilization depends on the ELMs energy density and time duration, n m ∼ 300 for the simulated ELMs of 0.45 MJ/m 2 and 0.25 ms duration. The PEGASUS-3D code is prepared for simulations of tungsten armour damage under action of ELMs of various energy deposition and time duration. These parameters of ELMs depend on ITER regimes of operation and on how successful will be the efforts on ELMs mitigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.