Abstract

A couple of bistable oxidation reactions on Rh(110), the CH_{3}OH+O_{2} and the NH_{3}+O_{2} reactions, exhibit localized excitations at the interface between oxygen-poor and oxygen-rich phase that propagate in a pulselike manner along the interface. A three-variable reaction-diffusion model is set up based on a mechanism that explains the localized excitations as being caused by temporary structural defects generated in the vicinity of the interface. The structural defects are a consequence of different densities of surface atoms in the oxygen-induced reconstruction phases and in the nonreconstructed (1×1) phase. One- and two-dimensional simulations show that traveling interface pulses (TIPs) exist in a region of so-called double metastability adjacent to the equistability point of the bistable system. As in the experiment, we observe triangular-shaped TIPs that move fast along the interface. Diffusional anisotropy is not required for the occurrence of TIPs. All essential features of the experiment are reproduced by the simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.