Abstract

The spontaneous growth of a dynamic in-plane shear crack is simulated using a newly developed method of analysis in which no a priori constraint is required for the crack tip path, unlike in other classical studies. We formulate the problem in terms of boundary integral equations; the hypersingularities of the integration kernels are removed by taking the finite parts. Our analysis shows that dynamic crack growth is spontaneously arrested soon after the bending of the crack tips, even in a uniformly stressed medium with homogeneously distributed fracture strengths. This shows that the dynamics of crack growth has a significant effect on forming the non-planar crack shape, and consequently plays an essential role in the arrest of earthquake rupturing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.