SIMULATION OF THE PROPERTIES OF A357 ALUMINUM ALLOY IN SEMI-SOLID STATE FOR EXTRUSION ADDITIVE MANUFACTURING OF METAL
In general, the primary issues related to the present design are primarily the high temperature range, which is generating enormous thermal loads to the machinery, and the inability of achieving even temperature distribution in the workpiece. The new approach in this paper mitigates these issues for the aluminum alloy extrusion process using a screw extruder equipped with a Double Wave Screw (DWS). The extrusion screw is typically divided into three regions: the feeding region, the compression region, and the metering region. The DWS component is designed for the compression and metering regions to achieve maximum shear rate in extrusion, to create globular microstructure. Furthermore, our work aims to predict significant process parameters such as viscosity, shear rate, and material flow velocity to determine the feasibility of 3D printing. In order to validate the effectiveness of the material extrusion process in the 3D printing process, the model has been simulated through the finite element method (FEM) by employing the power-law model, which describes the non-Newtonian behavior of the composite semi-liquid aluminum needle. Simulation has demonstrated that control of the material outlet temperature can generate a semi-liquid state of aluminum. Besides, the DWS configuration enhances the shear rate and homogeneity of the molten metal, ultimately leading to enhanced mechanical properties of the product extruded.
- Research Article
33
- 10.3390/pr11030868
- Mar 14, 2023
- Processes
Graphene is an important nanocarbon nanofiller for polymeric matrices. The polymer–graphene nanocomposites, obtained through facile fabrication methods, possess significant electrical–thermal–mechanical and physical properties for technical purposes. To overcome challenges of polymer–graphene nanocomposite processing and high performance, advanced fabrication strategies have been applied to design the next-generation materials–devices. This revolutionary review basically offers a fundamental sketch of graphene, polymer–graphene nanocomposite and three-dimensional (3D) and four-dimensional (4D) printing techniques. The main focus of the article is to portray the impact of 3D and 4D printing techniques in the field of polymer–graphene nanocomposites. Polymeric matrices, such as polyamide, polycaprolactone, polyethylene, poly(lactic acid), etc. with graphene, have been processed using 3D or 4D printing technologies. The 3D and 4D printing employ various cutting-edge processes and offer engineering opportunities to meet the manufacturing demands of the nanomaterials. The 3D printing methods used for graphene nanocomposites include direct ink writing, selective laser sintering, stereolithography, fused deposition modeling and other approaches. Thermally stable poly(lactic acid)–graphene oxide nanocomposites have been processed using a direct ink printing technique. The 3D-printed poly(methyl methacrylate)–graphene have been printed using stereolithography and additive manufacturing techniques. The printed poly(methyl methacrylate)–graphene nanocomposites revealed enhanced morphological, mechanical and biological properties. The polyethylene–graphene nanocomposites processed by fused diffusion modeling have superior thermal conductivity, strength, modulus and radiation- shielding features. The poly(lactic acid)–graphene nanocomposites have been processed using a number of 3D printing approaches, including fused deposition modeling, stereolithography, etc., resulting in unique honeycomb morphology, high surface temperature, surface resistivity, glass transition temperature and linear thermal coefficient. The 4D printing has been applied on acrylonitrile-butadiene-styrene, poly(lactic acid) and thermosetting matrices with graphene nanofiller. Stereolithography-based 4D-printed polymer–graphene nanomaterials have revealed complex shape-changing nanostructures having high resolution. These materials have high temperature stability and high performance for technical applications. Consequently, the 3D- or 4D-printed polymer–graphene nanocomposites revealed technical applications in high temperature relevance, photovoltaics, sensing, energy storage and other technical fields. In short, this paper has reviewed the background of 3D and 4D printing, graphene-based nanocomposite fabrication using 3D–4D printing, development in printing technologies and applications of 3D–4D printing.
- Research Article
76
- 10.1515/nanoph-2019-0483
- Feb 4, 2020
- Nanophotonics
Three-dimensional (3D) printing is a new paradigm in customized manufacturing and allows the fabrication of complex optical components and metaphotonic structures that are difficult to realize via traditional methods. Conventional lithography techniques are usually limited to planar patterning, but 3D printing can allow the fabrication and integration of complex shapes or multiple parts along the out-of-plane direction. Additionally, 3D printing can allow printing on curved surfaces. Four-dimensional (4D) printing adds active, responsive functions to 3D-printed structures and provides new avenues for active, reconfigurable optical and microwave structures. This review introduces recent developments in 3D and 4D printing, with emphasis on topics that are interesting for the nanophotonics and metaphotonics communities. In this article, we have first discussed functional materials for 3D and 4D printing. Then, we have presented the various designs and applications of 3D and 4D printing in the optical, terahertz, and microwave domains. 3D printing can be ideal for customized, nonconventional optical components and complex metaphotonic structures. Furthermore, with various printable smart materials, 4D printing might provide a unique platform for active and reconfigurable structures. Therefore, 3D and 4D printing can introduce unprecedented opportunities in optics and metaphotonics and may have applications in freeform optics, integrated optical and optoelectronic devices, displays, optical sensors, antennas, active and tunable photonic devices, and biomedicine. Abundant new opportunities exist for exploration.
- Research Article
46
- 10.1016/j.eurpolymj.2022.111128
- Mar 3, 2022
- European Polymer Journal
4D printing: Pragmatic progression in biofabrication
- Research Article
11
- 10.37349/emed.2023.00161
- Aug 31, 2023
- Exploration of Medicine
The development of patient-specific prosthetics, medication administration, the manufacture of tissues and organs, and surgical planning have all benefited significantly from the use of three-dimensional (3D) printing during the past few decades. The enthusiasm for customized healthcare has increased because the United States of America launched its Precision Medicine Initiative in 2015. In a nutshell, the phrase “personalized medicine” refers to medical care that is tailored to the patient. Nevertheless, the biomedical materials utilized in 3D printing are often stable and can’t react or be adaptive and intelligent in the body’s interior environment. Ex-situ fabrication of these substances, which includes printing on a flat substrate before releasing it onto the target surface, may cause a discrepancy between the printed portion and the target areas. The 3D printing is one method that might be used to provide customized treatment. The four-dimensional (4D) printing is developed while employing components that can be tweaked with stimulation. Several researchers have been looking at a new area recently that blends medicines with 3D and 4D printing. The development of 4D printing overcomes a number of these issues and creates a promising future for the biomedical industry. Smart materials that have been pre-programmed can be used in 4D printing to create structures that react interactively to outside stimuli. Despite these benefits, dynamic materials created using 4D technology remain in their development. As a result, several ideas for pharmaceutical products and formulas that may be customized and printed have emerged. Furthermore, Spritam®, the first medicine produced by 3D printing, has indeed reached a medical facility. This paper offers a summary of several 3D and 4D printing technologies and how they are used in the pharmaceutical industry for customized medicine and drug delivery systems.
- Research Article
34
- 10.1016/j.susmat.2022.e00481
- Aug 19, 2022
- Sustainable Materials and Technologies
Critical appraisal and systematic review of 3D & 4D printing in sustainable and environment-friendly smart manufacturing technologies
- Research Article
52
- 10.1108/rpj-12-2018-0305
- Jan 28, 2020
- Rapid Prototyping Journal
PurposeThis paper aims to provide a review of four-dimensional (4D) printing using fused-deposition modeling (FDM). 4D printing is an emerging innovation in (three-dimensional) 3D printing that encompasses active materials in the printing process to create not only a 3D object but also a 3D object that can perform an active function. FDM is the most accessible form of 3D printing. By providing a review of 4D printing with FDM, this paper has the potential in educating the many FDM 3D printers in an additional capability with 4D printing.Design/methodology/approachThis is a review paper. The approach was to search for and review peer-reviewed papers and works concerning 4D printing using FDM. With this discussion of the shape memory effect, shape memory polymers and FDM were also made.Findings4D printing has become a burgeoning area in addivitive manufacturing research with many papers being produced within the past 3-5 years. This is especially true for 4D printing using FDM. The key findings from this review show the materials and material composites used for 4D printing with FDM and the limitations with 4D printing with FDM.Research limitations/implicationsLimitations to this paper are with the availability of papers for review. 4D printing is an emerging area of additive manufacturing research. While FDM is a predominant method of 3D printing, it is not a predominant method for 4D printing. This is because of the limitations of FDM, which can only print with thermoplastics. With the popularity of FDM and the emergence of 4D printing, however, this review paper will provide key resources for reference for users that may be interested in 4D printing and have access to a FDM printer.Practical implicationsPractically, FDM is the most popular method for 3D printing. Review of 4D printing using FDM will provide a necessary resource for FDM 3D printing users and researchers with a potential avenue for design, printing, training and actuation of active parts and mechanisms.Social implicationsContinuing with the popularity of FDM among 3D printing methods, a review paper like this can provide an initial and simple step into 4D printing for researchers. From continued research, the potential to engage general audiences becomes more likely, especially a general audience that has FDM printers. An increase in 4D printing could potentially lead to more designs and applications of 4D printed devices in impactful fields, such as biomedical, aerospace and sustainable engineering. Overall, the change and inclusion of technology from 4D printing could have a potential social impact that encourages the design and manufacture of such devices and the treatment of said devices to the public.Originality/valueThere are other 4D printing review papers available, but this paper is the only one that focuses specifically on FDM. Other review papers provide brief commentary on the different processes of 4D printing including FDM. With the specialization of 4D printing using FDM, a more in-depth commentary results in this paper. This will provide many FDM 3D printing users with additional knowledge that can spur more creative research in 4D printing. Further, this paper can provide the impetus for the practical use of 4D printing in more general and educational settings.
- Research Article
181
- 10.3390/mi11090796
- Aug 22, 2020
- Micromachines
Since the late 1980s, additive manufacturing (AM), commonly known as three-dimensional (3D) printing, has been gradually popularized. However, the microstructures fabricated using 3D printing is static. To overcome this challenge, four-dimensional (4D) printing which defined as fabricating a complex spontaneous structure that changes with time respond in an intended manner to external stimuli. 4D printing originates in 3D printing, but beyond 3D printing. Although 4D printing is mainly based on 3D printing and become an branch of additive manufacturing, the fabricated objects are no longer static and can be transformed into complex structures by changing the size, shape, property and functionality under external stimuli, which makes 3D printing alive. Herein, recent major progresses in 4D printing are reviewed, including AM technologies for 4D printing, stimulation method, materials and applications. In addition, the current challenges and future prospects of 4D printing were highlighted.
- Research Article
12
- 10.37349/emed.2024.00203
- Feb 6, 2024
- Exploration of Medicine
Three-dimensional (3D) and four-dimensional (4D) printing have emerged as the next-generation fabrication technologies, covering a broad spectrum of areas, including construction, medicine, transportation, and textiles. 3D printing, also known as additive manufacturing (AM), allows the fabrication of complex structures with high precision via a layer-by-layer addition of various materials. On the other hand, 4D printing technology enables printing smart materials that can alter their shape, properties, and functions upon a stimulus, such as solvent, radiation, heat, pH, magnetism, current, pressure, and relative humidity (RH). Myriad of biomedical materials (BMMs) currently serve in many biomedical engineering fields aiding patients’ needs and expanding their life-span. 3D printing of BMMs provides geometries that are impossible via conventional processing techniques, while 4D printing yields dynamic BMMs, which are intended to be in long-term contact with biological systems owing to their time-dependent stimuli responsiveness. This review comprehensively covers the most recent technological advances in 3D and 4D printing towards fabricating BMMs for tissue engineering, drug delivery, surgical and diagnostic tools, and implants and prosthetics. In addition, the challenges and gaps of 3D and 4D printed BMMs, along with their future outlook, are also extensively discussed. The current review also addresses the scarcity in the literature on the composition, properties, and performances of 3D and 4D printed BMMs in medical applications and their pros and cons. Moreover, the content presented would be immensely beneficial for material scientists, chemists, and engineers engaged in AM manufacturing and clinicians in the biomedical field. Graphical abstract. 3D and 4D printing towards biomedical applications
- Research Article
14
- 10.1016/j.addma.2022.103166
- Nov 1, 2022
- Additive Manufacturing
Wood fibres are hygroscopic and swell when immersed in water. This effect can be used to create shape-changing structures in 3D printing. Hence, wood fibre reinforced filaments have the potential to be used in four-dimensional (4D) printing. In this work, biocomposites based on granulated or milled thermomechanical pulp (TMP) fibres and poly(lactic acid) (PLA) were prepared and evaluated based on their tensile properties. Poly(hydroxyalkanoates) (PHA) or poly(butylene-adipate-terephthalate) (PBAT) were included in the biocomposite recipes to assess their effect on the melt flow index (MFI) and tensile properties. Clear effects of the TMP fibre morphology on MFI were quantified. Biocomposites containing 20 wt% PBAT turned out to be stronger and tougher than the ones containing PHA. Based on that, filaments for 3D and 4D printing were manufactured. Interestingly, the tensile strength of 3D printed specimens containing milled TMP (TMPm) fibres was about 33% higher compared to those containing TMP fibre granulate (TMPg). Using hot water as the stimulus, the 3D printed specimens containing TMPg showed a greater reactivity and shape change compared to TMPm specimens. • Differences in TMP fibre morphology affect the melt-flow-index of biocomposites. • PBAT elastomer ensures the manufacturing of strong and tough biocomposites with enhanced flow properties for 3D printing. • 3D printed parts with shorter TMP fibre fragments showed greater tensile strength and were less brittle. • Mono- and bi-material 3D printed biocomposite causes shape morphing properties, using water as an external stimulus.
- Research Article
61
- 10.1007/s40430-022-03514-x
- May 11, 2022
- Journal of the Brazilian Society of Mechanical Sciences and Engineering
The addition of the time dimension to three-dimensional (3D) printing has introduced four-dimensional (4D) printing technology, which has gained considerable attention in different fields such as medical, art, and engineering. Nowadays, bioscience has introduced some ideas which can be fulfilled by 4D printing. Blending time with variations caused by the situation has many beneficial aspects such as perceptibility and adaptability. Since 4D printing can create a dynamic structure with stimuli-responsive materials, the applications of smart materials, stimulus, and 3D printing are the effective criteria in 4D printing technology. Smart materials with their flexible properties can reshape, recolor, or change function under the effect of the internal or exterior stimuli. Thus, an attractive prospect in the medical field is the integration of the 4D printing approach along with smart materials. This research aims to show the most recent applications of 4D printing technology and smart materials in medical engineering which can show better prospective of 4D printing applications in the future. Also, it describes smart medical implants, tissue engineering, and bioprinting and how they are being used for the 4D printing approach in medical engineering applications. In this regard, a particular emphasis is dedicated to the latest progress in the innovation and development of stimuli-responsive materials that are activated and respond over time to physical, chemical, and biological stimuli and their exploitation through 3D printing methods to fabrication 4D printing smart parts such as intelligent tissue-engineered scaffolds, smart orthopedic implants, and targeted drug delivery systems. On the other hand, major challenges in this technology are explained along with some suggestions for future works to address existing limitations. It is worth noting that despite significant research that has been carried out into 4D printing, it might be more valuable if some investigation is done into 4D bio-printing applications and how this approach will be developed.
- Conference Article
2
- 10.1115/msec2020-8428
- Sep 3, 2020
This paper reports on the 3D printing of flexible and stretchable parts based on multiwall carbon nanotubes (MWCNTs)/polyester-based thermoplastic polyurethane (TPU) nanocomposites. The rheological properties of the MWCNT/TPU nanocomposites with different wt.% of MWCNTs (0.1–3) were determined and used as guidance for the extrusion and 3D printing processes. MWCNT/TPU filaments were extruded and used for 3D printing of different flexible and stretchable parts. The mechanical, electrical, and piezoresistive response of the MWCNT/TPU nanocomposite filaments and 3D printed parts under static and monotonic loading was studied. The experimental results show that with increasing temperature and shear rate, respectively, the shear viscosity of the MWCNT/TPU nanocomposite decreases, whereas the viscosity increases with increasing wt.% of MWCNTs. With the addition of MWCNTs, the elastic modulus and tensile strength of the feedstock filament all increase, enhancing the printability of TPU by increasing the buckling resistance and the stability of the 3D printed layer. The electrical conductivity of the 3D printed MWCNT/TPU nanocomposites increases with increasing wt.% of MWCNTs and exceeds the conductivity of the filaments. The 3D printed MWCNT/TPU nanocomposites with 3 wt.% show an electrical conductivity about 10 S/m, irrespective of the printing direction. Moreover, the 3D printed MWCNT/TPU nanocomposites exhibit good mechanical properties and high piezoresistive sensitivity with gauge factor (50–600) dependent on both strain and printing direction.
- Research Article
7
- 10.1115/1.4048442
- Nov 11, 2020
- Journal of Manufacturing Science and Engineering
This paper reports on the 3D printing of flexible and stretchable parts based on multiwall carbon nanotube (MWCNT)/polyester-based thermoplastic polyurethane (TPU) nanocomposites. The rheological properties of the WCNT/TPU nanocomposites with different wt% of MWCNTs (0.1–3) were determined and used as guidance for the extrusion and 3D printing processes. MWCNT/TPU filaments were extruded and used for 3D printing of different flexible and stretchable parts. The mechanical, electrical, and piezoresistive response of the MWCNT/TPU nanocomposite filaments and 3D printed parts under static and monotonic loading was studied. The experimental results show that with increasing temperature and shear rate, respectively, the shear viscosity of the MWCNT/TPU nanocomposite decreases, whereas the viscosity increases with increasing wt% of MWCNTs. With the addition of MWCNTs, the elastic modulus and tensile strength of the feedstock filament all increase, enhancing the printability of TPU by increasing the buckling resistance and the stability of the 3D printed layer. The electrical conductivity of the 3D printed MWCNT/TPU nanocomposites increases with increasing wt% of MWCNTs and exceeds the conductivity of the filaments. The 3D printed MWCNT/TPU nanocomposites with 3 wt% show an electrical conductivity about 10 S/m, irrespective of the printing direction. Moreover, the 3D printed MWCNT/TPU nanocomposites exhibit good mechanical properties and high piezoresistive sensitivity with gauge factor (50–600) dependent on both strain and printing direction.
- Research Article
77
- 10.3390/pharmaceutics13091424
- Sep 8, 2021
- Pharmaceutics
Eudragit® polymers are polymethacrylates highly used in pharmaceutics for the development of modified drug delivery systems. They are widely known due to their versatility with regards to chemical composition, solubility, and swelling properties. Moreover, Eudragit polymers are thermoplastic, and their use has been boosted in some production processes, such as hot melt extrusion (HME) and fused deposition modelling 3D printing, among other 3D printing techniques. Therefore, this review covers the studies using Eudragit polymers in the development of drug delivery systems produced by HME and 3D printing techniques over the last 10 years. Eudragit E has been the most used among them, mostly to formulate immediate release systems or as a taste-masker agent. On the other hand, Eudragit RS and Eudragit L100-55 have mainly been used to produce controlled and delayed release systems, respectively. The use of Eudragit polymers in these processes has frequently been devoted to producing solid dispersions and/or to prepare filaments to be 3D printed in different dosage forms. In this review, we highlight the countless possibilities offered by Eudragit polymers in HME and 3D printing, whether alone or in blends, discussing their prominence in the development of innovative modified drug release systems.
- Research Article
- 10.2174/0122103031312257241011071610
- Oct 17, 2024
- Drug Delivery Letters
3D Printing, sometimes referred to as additive manufacturing, has made the concept of personalized medicine a reality. The primary objective of 3D and 4D printing is to produce intricate, customized pharmaceuticals at a reasonable cost. With improvements in materials, resolution, and speed, 3D printing technology is quickly developing. It includes faster construction, cost efficiency through reduced waste, design flexibility for complex structures, and sustainability through optimized material usage. An extensive literature survey was done on 3D and 4D printing of pharmaceuticals using PubMed, Elsevier, ScienceDirect, and Springer. The results were then filtered based on the titles, abstracts, and accessibility of the complete texts. The search engine Google Scholar was accessed for literature data mining. From the data mining, it was found that from the year 2009 to 2024 the number of research publications surged more than 200 times on the current topic. Even though 3-D and 4-D printing technologies have advanced significantly in a short amount of time, the most often used ones are still stereolithography, nozzle-based deposition, inkjet, and selective laser sintering. Their use has been modified for the production of nanoparticles, polypills, tablets, and implants, etc. Pharma's aspirations for tailored medications are being revolutionized by 3D printing, but cost, flexibility, and bioequivalence still need to be investigated. The present review offers a thorough analysis of various 3D and 4D printing methods and emphasizes the major advantages and disadvantages and major key challenges of 3D and 4D printing related to pharmaceuticals. Compared to 3D Printing, 4D printing offers better quality, efficacy, and functionality.
- Book Chapter
1
- 10.1515/9783110759747-017
- Mar 20, 2023
Over the last two decades, researchers, technologists, designers, and manufacturers have made enormous efforts to commercialize additive manufacturing (AM) or 3D printing technology in an array of fields including textile, apparel, and fashion industries. Recently, a great advancement in AM of complex architectures, which are impossible or difficult to produce otherwise, has been reported. Following the success of making metal/polymer-based 3D printed stiff structures, researchers have also explored the potential of this technique for creating flexible materials such as smart textiles. This chapter presents 3D printing as a novel method for the manufacturing of more flexible, cost-effective, and functional textiles via techniques such as screen printing and ink-jet printing and for fabricating smart textile structures which are slightly different from the conventional knitted or woven fabrics but possessing intelligent properties. Specifically, in this chapter, an overview of 3D printing technology, different 3D printing techniques, material selection, and properties of 3D printed objects in the context of manufacturing of smart and functional textiles is discussed. Emerging smart textiles enabled by 4D printing have also been explored which can exhibit transformation in their structure or colour as a function of time in the presence of an external stimulus. Therefore, the transition from 3D to 4D printing, the basic aspects of 4D printing, and materials selection for 4D printing of smart textiles and fashion products are presented here. The subsequent section discusses the potential applications of textiles enabled by 3D and 4D printing. Finally, current challenges and future perspectives of 3D and 4D printing of smart textiles are summarized.
- Research Article
- 10.11113/aej.v15.22272
- Aug 31, 2025
- ASEAN Engineering Journal
- Research Article
- 10.11113/aej.v15.23087
- Aug 31, 2025
- ASEAN Engineering Journal
- Research Article
- 10.11113/aej.v15.22823
- Aug 31, 2025
- ASEAN Engineering Journal
- Research Article
- 10.11113/aej.v15.22878
- May 31, 2025
- ASEAN Engineering Journal
- Research Article
- 10.11113/aej.v15.22445
- May 31, 2025
- ASEAN Engineering Journal
- Research Article
- 10.11113/aej.v15.21664
- May 31, 2025
- ASEAN Engineering Journal
- Research Article
- 10.11113/aej.v15.22190
- May 31, 2025
- ASEAN Engineering Journal
- Research Article
- 10.11113/aej.v15.22499
- May 31, 2025
- ASEAN Engineering Journal
- Research Article
- 10.11113/aej.v15.22826
- May 31, 2025
- ASEAN Engineering Journal
- Research Article
- 10.11113/aej.v15.22771
- May 31, 2025
- ASEAN Engineering Journal
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.