Abstract

We present a numerical approach which accounts for nucleation, growth and/or resorption of particles of fixed composition in aqueous solutions, and which involves functionalities suited to the formation of simple clay minerals in weathering processes, such as: formation of non-spherical particles, heterogeneous/homogeneous nucleation, several growth laws, precipitation resulting from the dissolution of primary minerals. The overall model is now embedded into a new numerical code called NANOKIN, in which several optimization procedures have been introduced in order to allow long dynamics to be followed. NANOKIN was applied to the precipitation of Al- bearing minerals from aqueous solutions: halloysite, kaolinite and Ca-montmorillonite. It allowed us to propose a stable scheme for the competitive precipitation of halloysite and kaolinite under two different types of initial conditions: (1) a given initial super-saturation state of the aqueous solution; (2) progressive super-saturation resulting from the kinetic dissolution of the minerals from a granitic rock under weathering conditions. Both yield particle sizes in the micron range, but with distinct crystal size distribution functions. The interplay between kinetic and thermodynamic effects is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.