Abstract
Although several histological studies in mice have examined healing of fractures secured with bone plates, no data are available at present on the mechanical response of fractured bone or callus tissue. Here, we simulated the healing response of fractures secured with rigid and flexible bone plate-designs. Using finite element methods, we simulated the maximum principal strain, stress, and strain energy density in the fractured region of mouse femurs under three loading conditions. In the rigid plate-design, the strain energy density increased when compression and bending were loaded and decreased when torsion was loaded. In the flexible plate-design, the strain energy density increased under all loading conditions. Since an increase in the strain energy density indicates an increase in mechanical stimulation, the simulation suggests that the flexible plate design may stimulate bone growth more than the rigid plate design. A favorable bone plate design must be stiff enough to avoid dislocation but flexible enough to provide mechanical stimulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.