Abstract

Crystals of ferroelectric‒ferroelastic gadolinium molybdate Gd2(MoO4)3, calcium molybdate CaMoO4, and double sodium‒gadolinium molybdates of stoichiometric (Na1/2Gd1/2MoO4) and cationdeficient (Na2/7Gd4/7MoO4) compositions, which are used to design solid-state lasers, phosphors, and white LEDs, have been simulated by the interatomic potential method. Their structural, mechanical, and thermodynamic properties are calculated using a unified system of interatomic potentials and effective ion charges, which demonstrated transferability and made it possible not only to describe the existing experimental data but also to predict some important physical and thermodynamic properties of molybdate crystals. The influence of the deviation from stoichiometry and partial ordering of cations on sites in nonstoichiometric crystals on the properties and local structure of sodium‒gadolinium molybdates is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.