Abstract

AbstractThe Ejina Basin is an extremely arid subwatershed in Northwest China. The predominant natural tree species in the area, Populus euphratica, depends on groundwater for sustenance. In recent decades, groundwater overdraft and increased water diversions from the Heihe River caused water table elevations to decline, such that large areas of P. euphratica have withered, creating a highly visible symbol of ecological change and desertification in the Ejina Basin. Ecological restoration efforts aimed at saving existing woodlands and cultivating new stands of P. euphratica are underway. To provide a better scientific basis for ecological restoration plans, it is necessary to understand the effect of water table elevation on P. euphratica water uptake. In this work, we used the HYDRUS‐1D software package to study groundwater movement into the root zone and the uptake of groundwater in a 10‐year‐old P. euphratica woodland. Additionally, we examined the changes in uptake that would occur for different water table elevations. The model calibration was confirmed by comparing predicted soil moisture contents during the P. euphratica growing season with field measured values. The results indicate that in 2000, with an average water table depth of 2·64 m, P. euphratica at the study site obtained about 53% of its water from groundwater during the middle part of the growing season (day of year 160–290). Simulations made with constant water table depths found that increasing the water table depth from 2 to 3 metres resulted in a 74% reduction in transpiration. Many factors can influence the optimal water table depth at a given site. An advantage of the modelling approach is that these factors can be systematically varied, creating a site‐specific impact assessment of water management options that may alter water table depths, thus aiding ecological restoration efforts. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.