Abstract

Organic nitrates are secondary atmospheric pollutants that play a key role in ozone and aerosol production. This study focused on the simulation of organic nitrates through a box model coupled with RACM2 (Regional Atmospheric Chemistry Mechanism, version 2), based on data from the PRIDE-PRD2006 campaign in Backgarden, China. Our study found that an overestimation of organic nitrate production rate was generated by the model. Furthermore, the effective production ratio ( α eff) of organic nitrates was around 0.033 after optimizing its chemical production module. The chemical impacts of organic nitrates on ozone production were related to VOC-OH reactivity and α eff. We found that VOC-OH reactivity was positively related to α eff, resulting in the suppression of ozone production caused by organic nitrates, which showed that P (O x =O3+NO2) increased initially and subsequently decreased with VOC-OH reactivity. These results highlight the importance of organic nitrate’s impact on ozone production in strategies to control ozone pollution, specifically regarding the reduction of low-molecular-weight VOCs in the Pearl River Delta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.