Abstract

Non-bioequivalent plasma concentration profiles among different dosage forms of the salt of raltegravir, a poorly soluble acidic drug, were investigated using biorelevant in vitro testing combined with the commercial in silico software, Simcyp®. A suspension and a tablet dosage forms of raltegravir potassium were selected as the test formulations. While dissolution from the suspension was rapid, dissolution from the tablets was slow and delayed by pre-exposure to an acidic environment. Although the tablet was expected to have complex in vivo performance, plasma concentration profiles were successfully simulated when gastric emptying was taken into account as a key physiological factor in in vitro and in silico trials. The effect of pre-exposure to acid in the stomach on dissolution behavior in the intestine was estimated by two-stage in vitro dissolution testing. Based on these results, theoretical in vivo dissolution profiles for different gastric emptying times were inputted into the in silico model and plasma concentration profiles were simulated taking the distribution of individual gastric emptying times into account. The in vitro and in silico method presented in this report would be a practical approach to simulate oral absorption from various formulations of poorly soluble weak acids and their salts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.