Abstract

The present investigation is devoted to one of the most difficult problems in the gas turbine industry: predicting the heat transfer to turbine blades. It is known that one of the important factors that affects heat transfer coefficients is a significant level of turbulence in the flow that surrounds a turbine blade. The influence of free-stream turbulence on heat transfer coefficients for a flat plate boundary layer with zero pressure gradient or in the vicinity of the stagnation point of a circular cylinder is investigated numerically. An algebraic relaxation-length model of turbulence is applied in order to simulate real situations in flows with a high level of free-stream turbulence. The results, temperature and velocity profiles, and heat transfer and drag coefficients, are compared with available experimental data. The proposed method is recommended for practical calculations of heat transfer coefficients on turbine blades.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.