Abstract

The head-tail instability caused by an electron cloud in positron storage rings is studied numerically using a simple model. In the model, the positron beam is longitudinally divided into many slices that have a fixed transverse size. The centroid of each slice evolves dynamically according to the interaction with a two-dimensional electron cloud at a given azimuthal location in the ring and a six-dimensional lattice map. A sudden and huge increase of the projected beam size and the mode coupling in the dipole spectrum are observed in the simulation at the threshold of the instability. Even below the threshold, the vertical beam size increases along a bunch train that has 8.5 ns bunch spacing. Above the threshold, a positive chromaticity can damp down the centroid motion but has very little effect on the blowup of the beam size. The results of the simulation are consistent with many observations at PEP-II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.