Abstract

Flow in baffled stirred vessels involves interactions between flow around rotating impeller blades and stationary baffles. When more than one impeller is used (which is quite common in practice), the flow complexity is greatly increased, especially when there is an interaction between two impellers. The extent of interaction depends on relative distances between the two impellers and clearance from the vessel bottom. In this paper we have simulated flow generated by two Rushton (disc) impellers. A computational snapshot approach was used to simulate single-phase flow experiments carried out by Rutherford et al. (1996). The computational model was mapped on the commercial CFD code FLUENT (Fluent Inc., USA). The simulated results were analyzed in detail to understand flow around impellers and interaction between impellers. The model predictions were verified using the data of Rutherford et al. (1996). The results presented in this paper have significant implications for applications of computational fluid mixing tools for designing multiple impeller stirred reactors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.