Abstract

Large scale neutrino detectors and muography rely on the muon direction in the detector to infer the muon’s or parent neutrino’s origin. However, muons accumulate deflections along their propagation path prior to entering the detector, which may need to be accounted for as an additional source of uncertainty. In this paper, the deflection of muons is studied with the simulation tool PROPOSAL, which accounts for multiple scattering and deflection on stochastic interactions. Deflections along individual interactions depend on the muon energy and the interaction type, and can reach up to the order of degrees – even at TeV to PeV energies. The accumulated deflection angle can be parametrized in dependence of the final muon energy, independent of the initial muon energy. The median accumulated deflection of a propagated muon with a final energy of {500}~{textrm{GeV}} is theta _{text {acc}} = {0.10}^circ with a {99}% central interval of [{0.01}^circ , ,{0.39}^circ ]. This is on the order of magnitude of the directional resolution of present neutrino detectors. Furthermore, comparisons with the simulation tools MUSIC and Geant4 as well as two different muon deflection measurements are performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.