Abstract

CO chemisorption on Pt supported on fractal surfaces was simulated in order to compute chemisorption dimension and active sites fractal dimension. Pt deposition was simulated using different models on both fractal and planar surfaces. The potential energy surface with two adsorption positions model was used to compute Pt–CO interaction and a Lennard–Jones 6–12 potential was used to simulate CO–CO interaction. Two Pt phases on fractal surface, one at low concentration — the dispersed phase and the second at high concentration — the aggregated phase characterized by weak interactions with support are obtained. The results are in accord with experimental data of CO chemisorption on Pt supported on γ-alumina. Computed data obtained for planar support are compared with those obtained on fractal support. The effect of fractal support on chemisorption data is underlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.