Abstract

PurposeSteadily increasing use of computational/virtual phantoms in medical physics has motivated expanding development of new simulation methods and data representations for modelling human anatomy. This has emphasized the need for increased realism, user control, and availability. In breast cancer research, virtual phantoms have gained an important role in evaluating and optimizing imaging systems. For this paper, we have developed an algorithm to model breast abnormalities based on fractal Perlin noise. We demonstrate and characterize the extension of this approach to simulate breast lesions of various sizes, shapes, and complexity. Materials and methodRecently, we developed an algorithm for simulating the 3D arrangement of breast anatomy based on Perlin noise. In this paper, we have expanded the method to also model soft tissue breast lesions. We simulated lesions within the size range of clinically representative breast lesions (masses, 5–20 mm in size). Simulated lesions were blended into simulated breast tissue backgrounds and visualized as virtual digital mammography images. The lesions were evaluated by observers following the BI-RADS assessment criteria. ResultsObservers categorized the lesions as round, oval or irregular, with circumscribed, microlobulated, indistinct or obscured margins. The majority of the simulated lesions were considered by the observers to have a realism score of moderate to well. The simulation method provides almost real-time lesion generation (average time and standard deviation: 1.4 ± 1.0 s). ConclusionWe presented a novel algorithm for computer simulation of breast lesions using Perlin noise. The algorithm enables efficient simulation of lesions, with different sizes and appearances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.