Abstract

Electronic packaging polymers filled with various solid additives such as silica, flame retardant, etc. have excessively been required for the use in advanced IC packages in recent years. It's necessary to predict the mechanical properties of these electronic packaging materials. On the basis of structural and mechanical characterization of particle filled epoxy materials, a new three-phase (dispersion phase, interface phase, and continuous phase) constitutive model and its simulation calculation are performed for the mechanical properties of the particle filled electronic packaging polymer in this study. In this paper, the interface chemical principle and three phase constitute model are combined, which improve the mechanical property's calculation and composition design method of electronic packaging polymer. With this model, the relationship between mechanical properties of the electronic packaging materials and modulus of matrix, solid particles content, particle size, gradation and thickness of the interface adhesive layer were constructed mathematically. This relationship and its derived patterns can be used in not only the prediction of the mechanical properties of electronic packaging materials but also the instruction of the composition design for particle filled electronic packaging materials

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.