Abstract

In the extensive urban rail transit network, interruptions will lead to service delays on the current line and spread to other lines, forcing many passengers to wait, detour, or even give up their trips. This paper proposes an event-driven simulation method to evaluate the impact of interruptions on passenger flow distribution. With this method, passengers are regarded as individual agents who can obtain complete information about the current traffic situation, and the impact of the occurrence, duration, and recovery of interruption events on passengers’ travel decisions is analyzed in detail. Then, two modes are used to assign passenger paths: experience-based pre-trip mode and response-based entrap mode. In the simulation process, the train is regarded as an individual agent with a fixed capacity. With the advance of the simulation clock, the network loading is completed through the interaction of the three agents of passengers, platforms, and trains. Interruption events are considered triggers, affecting other agents by affecting network topology and train schedules. Finally, taking Chongqing Metro as an example, the accuracy and effectiveness of the model are analyzed and verified. And the impact of interruption on passenger flow distribution indicators such as inbound volume, outbound volume, and transfer volume is studied from both the individual and overall dimensions. The results show that this study provides an effective method for calculating the passenger flow distribution of an extensive urban rail transit network in the case of interruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.