Abstract

The goal of this work is to validate the material models for parts created with a Material Jetting 3-dimensional printer through the comparison of Finite Element Analysis (FEA) simulations and physical tests. The strain maps generated by a video extensometer for multi-material samples are compared to the FEA results based on our material models. Two base materials (ABS-like and rubber-like) and their composites are co-printed in the graded tensile test samples. The graded islands are embedded in the rubber-like test specimens. The simulations were conducted utilizing previously fitted material models, a two-parameter Mooney-Rivlin model for the elastic materials (Tango Black+, DM95, and DM60) and a bilinear model for the rigid material (Vero White+). The results show that the simulation results based on our material models can predict the deformation behaviors of the multi-material samples during a uniaxial tensile test. Our simulation results are able to predict the maximum strain in the matrix material (TB+) within 5% error. Both global deformation pattern and local strain level confirm the validity of the simulated material models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.