Abstract
This study employed nano-indentation technology, molecular dynamics simulation, and experimental investigation to examine the stress relaxation behaviour of a polycrystalline γ-TiAl alloy. The simulation enabled the generation of a load-time curve, the visualisation of internal defect evolution, and the mapping of stress distribution across each grain during the stress relaxation stage. The findings indicate that the load remains stable following an initial decline, thereby elucidating the underlying mechanism of load change during stress relaxation. Furthermore, a nano-indentation test was conducted on the alloy, providing insight into the load variation and stress relaxation behaviour under different loading conditions. By comparing the simulation and experimental results, this study aims to guide the theoretical research and practical application of γ-TiAl alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.