Abstract

The dependence of luminous efficacy on phosphor concentration and thickness for high-power white light- emitting-diode (WLED) lamps is investigated by employing three-dimensional ray-tracing simulations. The simulations show that the brightness or luminous efficacy of WLED lamps highly depends on the combination of phosphor concentration and phosphor thickness (or phosphor-matrix composite volume). The package with lower concentration and higher phosphor thickness has higher luminous efficacy because the light trapping efficiency is lower with the low phosphor concentration. Our simulations demonstrating a 20% and 27% improvement in lumen output with 1.8 mm-phosphor package over 0.8 mm-phosphor package and 0.6 mm-phosphor package respectively are found to be fully supported by experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.