Abstract

A nonsequential ray tracing technique is used to simulate the narcissus phenomenon in infrared (IR) imaging cameras having cooled detectors. Imaging cameras based on two-dimensional focal plane array detectors are simulated. In a companion article, line-scan imaging cameras based on one-dimensional linear detector arrays are simulated. Diffractive phase surfaces commonly used in modern IR cameras are modeled including multiple diffraction orders in the narcissus retroreflection path to correctly simulate the stray light return signal. Practical optical design examples along with their performance curves are given to elucidate the modeling technique. Optical methods to minimize the narcissus return signal are thoroughly explained, and modeling results are presented. It is shown that the nonsequential ray tracing technique is an effective method to accurately calculate the narcissus return signal in complex IR cameras having diffractive surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.