Abstract

Lignins are hydrophobic, branched polymers that regulate water conduction and provide protection against chemical and biological degradation in plant cell walls. Lignins also form a residual barrier to effective hydrolysis of plant biomass pretreated at elevated temperatures in cellulosic ethanol production. Here, the temperature-dependent structure and dynamics of individual softwood lignin polymers in aqueous solution are examined using extensive (17 μs) molecular dynamics simulations. With decreasing temperature the lignins are found to transition from mobile, extended to glassy, compact states. The polymers are composed of blobs, inside which the radius of gyration of a polymer segment is a power-law function of the number of monomers comprising it. In the low temperature states the blobs are interpermeable, the polymer does not conform to Zimm/Stockmayer theory, and branching does not lead to reduction of the polymer size, the radius of gyration being instead determined by shape anisotropy. At high temperatures the blobs become spatially separated leading to a fractal crumpled globule form. The low-temperature collapse is thermodynamically driven by the increase of the translational entropy and density fluctuations of water molecules removed from the hydration shell, thus distinguishing lignin collapse from enthalpically driven coil-globule polymer transitions and providing a thermodynamic role of hydration water density fluctuations in driving hydrophobic polymer collapse. Although hydrophobic, lignin is wetted, leading to locally enhanced chain dynamics of solvent-exposed monomers. The detailed characterization obtained here provides insight at atomic detail into processes relevant to biomass pretreatment for cellulosic ethanol production and general polymer coil-globule transition phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.