Abstract
In order to optimize the slit/slot geometry design of a bipropellant pintle injector, the impinging spray development of a pintle injector was numerically investigated. The VOF (volume of fluid) and LES (large eddy simulation) methods were employed for an analysis to capture the gas–liquid interface by means of the AMR (adaptive mesh refinement) method. In those simulation cases, different flowrates, slot numbers, pintle diameters, slot thicknesses and slot shapes were compared for an analysis. In a comparison of visualization and quantification, a high flowrate and large pintle diameter were shown to be more positive features for improving the atomization quality and mixing effect. As for the slot parameters and shape, the spray development was mainly determined by the flow proportion between the slit jet and slot jet. The simulation results indicated that dominant slot jets cause a more dispersed spatial distribution, which is more conducive to the subsequent improvement of combustion efficiency in a limited space. However, an excessive increase in the number of slot jets can weaken the overall atomization quality and mixing effect, so it is suggested to ensure a balance for geometry design optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.