Abstract
Ability to estimate motor unit propagation velocity correctly using different two-channel methods for delay estimation and different non-invasive spatial filters was analysed by simulation. It was established that longitudinal double difference electrodes could be not a better choice than simple bipolar parallel electrodes. Spatial filtration with a new multi-electrode (performing difference between signals detected by two transversal double difference electrodes positioned along the muscle fibres) promises to give the best estimate. Delay estimation between reference points is more preferable than that based on the cross-correlation technique, which is considerably sensitive to the fundamental properties of the muscle fibre extracellular fields. Preliminary averaging and approximation of the appropriate parts of the signals around chosen reference points could reduce the larger noise sensitivity and the effects of local tissue inhomogeneities as well as eliminate the sampling problem. A correct estimate of the propagation velocity could be impossible, even in the case of not very deep motor units (15 or 10 mm, depending on the spatial filter used) with relatively long (about 120 mm) muscle fibres. In the case of fibres with asymmetrical location of the end-plates in respect to the fibre ends, the propagation velocity estimates could be additionally biased above the longer semilength of the motor unit fibres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.