Abstract

In order to study the effect of a high twist rate propeller on the flow field characteristics of pseudoplastic non-Newtonian fluids, the numerical simulation method was used to analyze the mixing flow field of pseudoplastic non-Newtonian fluids at different concentrations in this paper. By changing the rotational speed and the blade installation height, the vorticity, turbulent energy, mixing power consumption, mixing time and mixing energy of the flow field were analyzed. By analyzing and comparing the research results, it was found that increasing the mixing propeller speed can effectively improve the mixing effect. Single-layer arrangement of mixing propeller is not suitable to be placed close to the bottom of the tank, and the mixing of the upper flow field is weaker. Under the same conditions, when the viscosity of pseudoplastic non-Newtonian fluid is increased, the high vorticity and high turbulence energy area is reduced to the mixing propeller area, and the time required for mixing 1.25% CMC solution is 246 times longer than that for mixing 0.62% CMC solution and the required mixing energy also increases sharply. The accuracy of the numerical simulation was verified by experiments. Considering the mixing effect and the mixing power consumption, the single-layer arrangement propeller is more suitable for mixing pseudoplastic non-Newtonian fluids with mass fraction of 0.62% CMC or below. This study can provide a reference for the practical application of propeller mixers to mix pseudoplastic non-Newtonian fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.