Abstract

Path-integral molecular dynamics have been used to simulate the phase-I crystalline form of ammonia, using an empirical force field. This method allows quantum-mechanical effects on the average geometry and vibrational quantities to be evaluated. When these are used to adjust the output of a high-temperature density functional theory simulation, the results are consistent with those given by the most recent structural refinement based on powder neutron diffraction data. It is clear that the original refinement overestimated thermal motion, and therefore also overestimated the equilibrium N-{H/D} bond length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.