Abstract

We describe an approach to modelling the spatio-temporal spread of foot and mouth disease through feral animal and unfenced livestock populations. We used a susceptible-infected-recovered model, implemented in a cellular automata framework, to assess the spread of FMD across two regions of Queensland, Australia. Following a sensitivity analysis on the infectious states, scenario analyses were conducted using feral pigs only as the susceptible population, and then with the addition of livestock, and initiated in the wet season and in the dry season. The results indicate that, depending on the season the outbreak is initiated, and without the implementation of control measures, an outbreak of Foot and Mouth Disease around Winton could continue unchecked, while an outbreak around Cape York may die out naturally. The approach explicitly incorporates the spatial relationships between the populations through which the disease spreads and provides a framework by which the spread of disease outbreaks can be explored through varying the model parameters. It highlights the emergence and importance of spatio-temporal patterns, something that previous modelling of FMD in feral animal and unfenced livestock populations has lacked.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.