Abstract

AbstractA numerical study is presented about the effect of a uniform magnetic field on free convection in a horizontal cylindrical annulus using the lattice Boltzmann method. The inner and outer cylinders are maintained at uniform temperatures and it is assumed the walls are insulating with a magnetic field. Detailed numerical results of heat transfer rate, temperature, and velocity fields have been presented for Pr=0.7, Ra=103 to 5 × 104, and Ha=0 to 100. The computational results show that in a horizontal cylindrical annulus the flow and heat transfer are suppressed more effectively by a radial magnetic field. It is also found that the flow oscillations can be suppressed effectively by imposing an external radial magnetic field. The average Nusselt number increases by increasing the radius ratio while it decreases by increasing the Hartmann number. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.