Abstract
A growing cohort of experimental linear photonic networks implementing Gaussian boson sampling (GBS) have now claimed quantum advantage. However, many open questions remain on how to effectively verify these experimental results, as scalable methods are needed that fully capture the rich array of quantum correlations generated by these photonic quantum computers. In this paper, we briefly review recent theoretical methods to simulate experimental GBS networks. We focus mostly on methods that use phase-space representations of quantum mechanics, as these methods are highly scalable and can be used to validate experimental outputs and claims of quantum advantage for a variety of input states, ranging from the ideal pure squeezed vacuum state to more realistic thermalized squeezed states. A brief overview of the theory of GBS, recent experiments, and other types of methods are also presented. Although this is not an exhaustive review, we aim to provide a brief introduction to phase-space methods applied to linear photonic networks to encourage further theoretical investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.