Abstract

Coulomb and log-gases are exchangeable singular Boltzmann-Gibbs measures appearing in mathematical physics at many places, in particular in random matrix theory. We explore experimentally an efficient numerical method for simulating such gases. It is an instance of the Hybrid or Hamiltonian Monte Carlo algorithm, in other words a Metropolis-Hastings algorithm with proposals produced by a kinetic or underdamped Langevin dynamics. This algorithm has excellent numerical behavior despite the singular interaction, in particular when the number of particles gets large. It is more efficient than the well known overdamped version previously used for such problems, and allows new numerical explorations. It suggests for instance to conjecture a universality of the Gumbel fluctuation at the edge of beta Ginibre ensembles for all beta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.