Abstract

Ocean General Circulation Model (OGCM) simulations from 1970–2007 are used to study the upper ocean heat content variability in the Tropical Indian Ocean (TIO). Model computed heat contents up to 50 m (denoted by HC50 m hereafter) representing upper ocean heat content and 300 m (HC300 m) representing heat content up to thermocline depth are first compared with heat contents computed from observations of two buoys in the TIO. It is found that there is good agreement between the model and observations. Fourier analysis of heat content is carried out in different regions of TIO. The amplitudes of semi-annual variability for HC50 m and HC300 m are observed to be greater than those for the annual variability in the Bay of Bengal, while in the Arabian Sea there is a mixed result. Heat content tendency is known to be governed by net surface heat flux and horizontal as well as vertical heat transports. For understanding the relative importance of these processes, a detailed analysis of these terms in the tendency equation is carried out. Rossby wave is observed in the annual mode of heat transport while equatorial jet and Kelvin waves are observed in the semi-annual mode of heart transport. Finally, the correlation between heat content and sea surface temperature (SST) and sea level anomaly (SLA), taken one at a time, is computed. It is found that the correlation improves significantly when both these quantities are together taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.