Abstract

The bio-electrochemical response in simulated body fluid of the Zr53Cu30Ni9Al8 metallic glasses with different degrees of partial crystallization was systematically examined and discussed. Through thermal annealing, the volume fractions of the crystalline phases are determined to be 0, 34, 63, and near 100%. Based on the bio-corrosion voltage and current, as well as the polarization resistance, it is concluded that the fully amorphous alloy exhibits the highest bio-electrochemical resistance. With an increasing degree of partial crystallization, the corrosion resistance becomes progressively degraded. The passive current reveals that the fully amorphous metallic glasses can form a more protective and denser passive film on the metallic glass surface. The formation of reactive nanocrystalline phases in the amorphous matrix would reduce the bio-corrosion resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.