Abstract

AbstractWinter forage grazing systems in New Zealand cause compaction of soil by grazing animals, especially when the soil is wet. However, there is little information on the effects of animal trampling on denitrifiers in soil, despite their importance for N2O production. Here, we report a field study of the abundance of the denitrifying genes nirS, nirK, and nosZ and N2O emissions following the application of dairy cow urine in a free‐draining stony soil. Importantly, we found that simulated animal trampling altered some of the denitrifying microbial communities, thus leading to increased N2O emissions. Over the 111 day measurement period, the abundance of nitrite (NO2−)‐reducing nirS gene copy numbers increased significantly by 87% in the trampled soil with urine (P < 0.01) and increased by 40% in the trampled soil without urine (P < 0.05), but the nirS gene abundance did not change significantly in the nontrampled soil. The abundance of NO2− reducing nirK gene copy numbers was not affected by trampling, but increased significantly following urine application. The abundance of N2O‐reducing nosZ clade I and nosZ clade II gene copy numbers increased significantly in the trampled soil, but did not change significantly in the nontrampled soil. N2O emissions from the trampled soil were about twice that from the nontrampled soil without urine (1.20 and 0.62 kg N2O‐N per ha, respectively) and about eight times greater (6.24 kg N2O‐N per ha) than from nontrampled soil (0.80 kg N2O‐N per ha) when urine was applied. These results strongly suggest that animal trampling during winter forage grazing can have a major impact on denitrifying communities in soil, which in turn stimulate greater denitrification with increased N2O emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.