Abstract

This paper presents methodology to evaluate size and cost of PV power system components. The simplified mathematical expressions are given for sizing of PV system components. The PV array size is determined based on daily electrical load (kWh/day) and number of sunshine hours on optimally tilted surface specific to the country. Based on life cycle cost (LCC) analysis, capital cost (US$/kW P) and unit cost of electricity (US$/kWh) were determined for PV systems such as stand-alone PV (SAPV) and building integrated PV (BIPV). The mitigation of CO 2 emission, carbon credit and energy payback time (EPBT) of PV system are presented in this paper. Effect of carbon credit on the economics of PV system showed reduction in unit cost of electricity by 17–19% and 21–25% for SAPV and BIPV systems, respectively. This methodology was illustrated using actual case study on 2.32 kW P PV system located in New Delhi (India).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.