Abstract

In this study, the authors propose a simplified maximum likelihood (ML)-based detection scheme for N t × N r M-ary quadrature amplitude modulation (M-QAM) spatial modulation (SM) that is computationally less complex than the conventional ML detection scheme. Instead of searching for the transmit antenna index and transmitted symbol pair among all possible N t M pairs as in the ML-based optimal detection, the proposed simplified ML-based detection scheme firstly searches for pairs of transmit antenna index and transmitted symbol in level-one subsets which the transmitted signal most probably belongs to, and secondly searches for pairs of transmit antenna index and transmitted symbol in level-two subsets among those pairs in level-one subsets. We also extend the simplified ML-based optimal detection into multistage detection. Simulation results validate that the bit error rate (BER) performance of the proposed simplified ML-based detection schemes is almost the same as that of conventional ML detection with significant complexity reduction until a BER of 10 -6 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.