Abstract

Finite set model predictive control (FS-MPC) has become a promising control technology in power converter, because of the advantages of good dynamic response and accurate current tracking capability. In real-time control process, the conventional FS-MPC strategy requires more time for prediction and optimization. As a result, there will be a certain delay between sampling and output. In order to reduce the amount of calculation and overcome the adverse effect of the delay on the system performance, this paper presents a simplified FS-MPC method. Firstly, adjacent levels method is used to reduce the amount of the calculation, and then two-step FS-MPC is adopted to compensate the calculation delay. The control strategy is validated by the simulation and experimental results of a grid-connected cascaded H-bridge converter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.