Abstract

The well-known first two terms in the asymptotic density series for the ground-state energy of a Bose gas, ${E}_{0}=2\ensuremath{\pi}N\ensuremath{\rho}a[1+(\frac{128}{15\ensuremath{\surd}\ensuremath{\pi}}){(\ensuremath{\rho}{a}^{3})}^{\frac{1}{2}}]$, where $a$ is the scattering length of the pair potential, is ordinarily obtained by summing an infinite set of graphs in perturbation theory. We show here how this same series may be obtained by elementary methods. Our method offers the advantages of simplicity and directness. Another advantage is that the hard-core case can be handled on the same basis as a finite potential, no pseudopotential being required. In fact, the analysis of the hard-core potential turns out to be simpler than for a finite potential, as is the case in elementary quantum mechanics. In an Appendix we discuss the high-density situation and show that for a certain class of potentials Bogoliubov's theory is correct in this limit. Thus, Bogoliubov's theory, which is never correct at low density unless a pseudopotential is introduced, is really a high-density theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.