Abstract
A chitosan/alginate/graphene oxide/UiO-67 (CS/SA/GO/UiO-67) amphoteric aerogel was synthesized successfully. A series of characterization experiments of CS/SA/GO/UiO-67 amphoteric aerogel was performed by SEM, EDS, FT-IR, TGA, XRD, BET, and zeta potential. The competitive adsorption properties of different adsorbents for complex dyes wastewater (MB and CR) at room temperature (298 K) were compared. Langmuir isotherm model predicted that the maximum adsorption quantity of CS/SA/GO/UiO-67 for CR and MB was 1091.61 and 1313.95 mg/g, respectively. The optimum pH values of CS/SA/GO/UiO-67 for the adsorption of CR and MB were 5 and 10, respectively. The kinetic analysis showed that the adsorption of MB and CR on CS/SA/GO/UiO-67 was more suitable for the pseudo-second-order and pseudo-first-order kinetic model, respectively. The isotherm study revealed that the adsorption of MB and CR was consistent with the Langmuir isotherm model. The thermodynamic study demonstrated that the adsorption process of MB and CR was exothermic and spontaneous. FT-IR analysis and zeta potential characterization experiments revealed that the adsorption mechanism of MB and CR on CS/SA/GO/UiO-67 depended on π-π bond, hydrogen bond, and electrostatic attraction. Repeatable experiments showed that the removal rates of MB and CR of CS/SA/GO/UiO-67 after six cycles of adsorption were 67.19 and 60.82 %, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.