Abstract

Three simple screening models of nonaqueous phase liquid (NAPL) dissolution in the subsurface are proposed based on the NAPL mass conservation and the assumption of proportionality between the residual NAPL source zone concentration and the remaining residual NAPL mass. The purpose of the proposed models is to predict the solute concentration in the zone of the residual NAPL as a result of dissolution. The predicted source zone concentration decrease is used to simulate and account for the decrease of dissolution rate with time. The proposed simple NAPL dissolution models enable the pseudo-equilibrium formulation to be used and therefore the numerical simulations for field application problems can be simplified compared to the non-equilibrium counterpart. With proper choice of empirical parameters, the proposed simple screening models can work as well as more complex dissolution rate correlation models, such as that of Imhoff et al. [Water Resour. Res. 30 (1994) 307–320]. It is found that the proposed models are very good for quantifying non-equilibrium dissolution, which is characterized by tailing of breakthrough curves. The models are especially useful for situations of small residual NAPL saturation, which are typical for many field applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.