Abstract

Improved power conversion efficiency (PCE), by up to ∼27%, of organic solar cells based on poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS)/poly(3-hexylthiophene):[6,6]-phenyl-C 60-butyric acid methyl ester (P3HT:PCBM) were obtained via simple modifications, widely applicable, in the fabrication of the spin-coated PEDOT:PSS layer. These included (i) further diluting the original PEDOT:PSS solution with deionized water, (ii) mixing the original PEDOT:PSS solution with ethylene glycol (EG), and (iii) spin coating EG over a PEDOT:PSS layer fabricated using the original solution. The optimal dilutions, spin coating rates, and durations were determined. Approach (iii) resulted in the best cell with a PCE of 4.7% as compared to 3.7% for the untreated PEDOT:PSS. To evaluate the origin of the improvements we monitored the PEDOT:PSS conductivity, external quantum efficiency of the devices, and their I–V curves that indicated an increase of ∼16% in the short-circuit current I SC. Other characteristics included the PEDOT:PSS layer thickness, its transmittance, P3HT:PCBM absorption spectra, its morphology, and surface chemical composition. The results indicate that in addition to the enhanced PEDOT:PSS conductivity (following some of the treatments) that improves charge extraction, enhanced PEDOT:PSS transmission and especially, enhanced P3HT:PCBM absorption contribute to improved solar cell performance, the latter by increasing I SC. While the various treatments in the optimized devices had a minor effect on the PEDOT:PSS thickness, its morphology, and consequently that of the active layer, were affected. The surface roughness of the active layer increased significantly and, importantly, in devices with PEDOT:PSS/EG/P3HT:PCBM, PCBM aggregates were observed near the cathode. Such aggregates may also result in increased absorption and improved charge extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.