Abstract

Simple analytical parameterizations for the ground-state energy of the one-dimensional repulsive Hubbard model are developed. The charge dependence of energy is parameterized using exact results extracted from the Bethe-ansatz (BA). The resulting parameterization is shown to be in better agreement with highly precise data obtained from a fully numerical solution to the BA equations than previous expressions (Lima et al 2003 Phys. Rev. Lett.90 146402). Unlike these earlier proposals, the present parameterization correctly predicts a positive Mott gap at half filling for any U > 0. The construction is extended to spin-dependent phenomena by parameterizing the magnetization dependence of the ground-state energy using further exact results and numerical benchmarking. Lastly, the parameterizations developed for the spatially uniform model are extended by means of a simple local-density-type approximation to spatially inhomogeneous models, e.g. in the presence of impurities, external fields or trapping potentials. The results are shown to be in excellent agreement with independent many-body calculations, at a fraction of the computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.