Abstract
The self-consistent field functions for the ground state of the first- and second-row atoms (from He to Ar) are computed with a basis set in which two Slater-type orbitals (STO's) are chosen for each atomic orbital. The reported STO's have carefully optimized orbital exponents. The total energy is not far from the accurate Hartree—Fock energy given by Clementi, Roothaan, and Yoshimine for the first-row atoms and unpublished data for the second-row atoms. The obtained basis sets have sufficient flexibility to be a most useful starting set for molecular computations, as noted by Richardson. With the addition of 3d and 4f functions, the reported atomic basis sets provide a molecular basis set which duplicate quantitatively most of the chemical information derivable by the more extended basis set needed to obtain accurate Hartree—Fock molecular functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.