Abstract

An analogy is established between the solutions of the problems of singularities of stresses in linear and bilinear elastic isotropic media. It is shown that the distributions of stresses and displacements in the vicinity of singular points on the boundary of the body (characterized by the singularities of stresses) are described, in both cases, by the same functional dependences on the space coordinates but with different characteristics of the material. We deduce expressions for the effective moduli of elasticity and Poisson's ratio of the bielastic medium including the parameter of hardening of the material. The solution of the problem of singularities of stresses in bilinear materials is obtained from the solution of the corresponding problem for the linear elastic medium by replacing the elastic constants with the corresponding effective values depending on the parameter of hardening of the material. The cases of wedge-shaped notches (for various boundary conditions imposed on their edges), two-component wedges, plane wedge-shaped cracks, and circular conic notches or rigid inclusions in the bielastic space are studied in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.