Abstract

In this study, we discuss a new class of fuzzy subsethood measures between fuzzy sets. We propose a new definition of fuzzy subsethood measure as an intersection of other axiomatizations and provide two construction methods to obtain them. The advantage of this new approach is that we can construct fuzzy subsethood measures by aggregating fuzzy implication operators which may satisfy some properties widely studied in literature. We also obtain some of the classical measures such as the one defined by Goguen. The relationships with fuzzy distances, penalty functions, and similarity measures are also investigated. Finally, we provide an illustrative example which makes use of a fuzzy entropy defined by means of our fuzzy subsethood measures for choosing the best fuzzy technique for a specific problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.