Abstract
The use of AgNP is becoming more and more widespread in biomedical field. But compared with the promising bactericidal function, other physiological effects of AgNP on cells are relatively scant. In this research, we propose quantitative phase microscopy (QPM) as a new method to study the degranulation, and AgNP-induced RBL-2H3 cell degranulation is studied as well. Firstly, HeLa cells as the cell control and PBS as the solvent control, we measured the cell volume and cross section profile (x-z plane) with QPM. The results showed that the volume and cross section profile changed only the RBL-2H3 cells exposed to calcium ionophore A23187, which demonstrates the validity of QPM in degranulation research. Secondly, 50μg/mL of AgNP was used instead of A23187, and the measurement of cell volume and cross section profile was carried out again. RBL-2H3 cell volume increased immediately after AgNP was added, and cross section profile showed that the cell surface became granulated, but HeLa cell was lack of that effect. Phase images obviously indicated the RBL-2H3 cell deformation. Thirdly, stained with Fluo-3/AM, intracellular calcium Ca<sup>2+</sup>]<sub>i</sub> of single RBL-2H3 cell treated with AgNP was observed with fluorescent microscopy; incubated with AgNP for 20min, the supernatant of RBL-2H3 cells was collected and reacted with o-phthalaldehyde (OPA), then the fluorescent intensity of histamine-OPA complex was assayed with spectrofluorometer. The results of Ca<sup>2+</sup>]<sub>i</sub> and histamine increase showed that degranulation of AgNP-induced RBL-2H3 cell occurred. So, the cell volume was used as a parameter of degranulation in our study and AgNP-induced RBL-2H3 cells degranulation was confirmed by the cell volume increment, cross section profile change, and [Ca<sup>2+</sup>]<sub>i</sub> and histamine in supernatant increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.