Abstract
PurposeTo develop a silicon lateral Schottky rectifier with low forward voltage drop and low reverse leakage current while its breakdown voltage is significantly larger than that of a conventional Schottky rectifier.Design/methodology/approachA two‐dimensional device simulation has been used, to examine the effect lateral dual sidewall Schottky concept on the current‐voltage characteristics of a lateral Schottky rectifier on silicon‐on‐insulator. The Schottky contact consists of a low‐barrier metal and a high‐barrier metal.FindingsResults show that, during forward bias, the low‐barrier Schottky (LBS) contact conducts resulting in a low forward voltage drop. During the reverse bias, the LBS contact is shielded by the depletion region of the high‐barrier Schottky contact resulting in a low reverse leakage current.Practical implicationsWith this approach, silicon Schottky rectifiers with low power dissipation and improved breakdown voltage can be realized.Originality/valueThe proposed device has a large commercial potential as a low‐power high‐voltage switching device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.