Abstract

Permeation of inorganic salts in water-swollen silicone rubber-hydrogel composites consisting of a silicone rubber matrix and lightly cross-linked particles of poly(2-hydroxyethyl methacrylate), poly(2-hydroxyethyl methacrylate- co-methacrylic acid), poly(methacrylic acid), polyacrylamide or poly(acrylamide- co-methacrylic acid) hydrogels was investigated. The results, together with earlier data on permeation of non-ionic low-molecular-weight substances through the composite materials, were evaluated in terms of the free-volume diffusion theory. It was found that the materials with water content exceeding a certain limit are highly permeable to the salts, and that, as regards permeation properties, they behave as homogeneous water-swollen hydrogels. The dependence of electrical conductivity of the water-swollen composites on the hydrogel phase content was measured, and the results are discussed in relation to other transport properties and to the structure of the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.