Abstract

Background. A membrane oxygenator consisting of a microporous polypropylene hollow fiber with a 0.2-μm ultrathin silicone layer (cyclosiloxane) was developed. Animal experimental and preliminary clinical studies evaluated its reliability in bypass procedures.Methods. Five 24-hour venoarterial bypass periods were conducted on dogs using the oxygenator (group A). In 5 controls, bypass periods were conducted using the same oxygenator without silicone coating (group B). As a preliminary clinical study, 14 patients underwent cardiopulmonary bypass with the silicone-coated oxygenator.Results. Eight to 16 hours (mean, 12.2 hours) after initiation of bypass, plasma leakage occurred in all group B animals, but none in group A. The O2 and CO2 transfer rates after 24 hours in group A were significantly higher than at termination of bypass in group B (p < 0.005 and p < 0.03, respectively). Scanning electron microscopy of silicone-coated fibers after 24 hours of bypass revealed no damage to the silicone coating of the polypropylene hollow fibers. In the clinical study, the oxygenator showed good gas transfer, acceptable pressure loss, low hemolysis, and good durability.Conclusions. This oxygenator is more durable and offers greater gas transfer capabilities than the previous generation of oxygenators.(Ann Thorac Surg 1997;63:1730–6)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.