Abstract
The incorporation of silicon can improve the bioactivity of hydroxyapatite (HA). Silicon-substituted HA (Ca(10)(PO(4))(6-x )(SiO(4))( x )(OH)(2-x ), Si-HA) composite coatings on a bioactive titanium substrate were prepared by using a vacuum-plasma spraying method. The surface structure was characterized by using XRD, SEM, XRF, EDS and FTIR. The bond strength of the coating was investigated and XRD patterns showed that Ti/Si-HA coatings were similar to patterns seen for HA. The only different XRD pattern was a slight trend toward a smaller angle direction with an increase in the molar ratio of silicon. FTIR spectra showed that the most notable effect of silicon substitution was that -OH group decreased as the silicon content increased. XRD and EDS elemental analysis indicated that the content of silicon in the coating was consistent with the silicon-substituted hydroxyapatite used in spraying. A bioactive TiO(2) coating was formed on an etched surface of Ti, and the etching might improve the bond strength of the coatings. The interaction of the Ti/Si-HA coating with human serum albumin (HSA) was much greater than that of the Ti/HA coating. This might suggest that the incorporation of silicon in HA can lead to significant improvements in the bioactive performance of HA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.